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Abstract 

X-ray diffraction of plastic crystals is investigated by 
using the decomposition of the orientational average 
density of the atoms on symmetry-adapted functions. 
For a cubic lattice, the molecular librational amplitude 
is related to the order of the cubic harmonics to be 
used. For a rigid molecule with 3m symmetry in a cubic 
lattice, the symmetry-adapted functions and the rotator 
functions are given up to order 12. The plastic phase 
structure of 1-cyanoadamantane, C~IH~sN, which is 
f.c.c., Z = 4 and a = 9.813 (3)A, has been studied in 
the Fm3m space group. The orientational average den- 
sity of the cyano group has a very sharp maximum in 
the 10011 directions not completely describable (R w = 
15.4%) with cubic harmonics of order only up to 12. 
All the results obtained with this method agree very 
well with the corresponding ones from the Frenkel 
model structure of this compound. 

!. Introduction 

Plastic-crystal structures are usually studied with a 
Frenkel model, in which the molecules perform small 
librations around the 'equilibrium positions'. However, 
when large molecular amplitude librations occur in 
these plastic crystals this notion of 'equilibrium 
positions' becomes meaningless. 

For this reason, a new method, which analyses the 
orientational structure of plastic crystals with rigid 
molecules, was proposed some years ago (Press & 
Hfiller, 1973). This method, which calculates the 
molecular orientational probability with respect to the 
lattice, has only been used for cubic lattices with the 
corresponding molecular symmetries (m3m, 5~3m, 432) 
or for a hexagonal lattice with a dumb-bell molecule 
(Press & Hi.iller, 1978). 

Therefore, in this paper we study the X-ray 
diffraction results of plastic crystals with different 
lattice and molecule symmetries. 

We have applied these general calculations to the 
particular case of a molecule of 3m symmetry in a 
cubic lattice. 
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II. Symmetry-adapted-function analysis of plastic- 
crystal structure 

(1) General case 

In this paper we use a general method for structural 
investigations given by Seymour & Pryor (1970), Press 
& Hfiller (1973) and Yvinec (1977). 

In the following we use the notation of Press & 
Hiiller (1973). According to this paper, if the coupling 
between translational and rotational motions is neglec- 
ted, the structure factor F(Q) can be written as a 
product of two terms: the first one corresponds to the 
librations and the second to the centre-of-mass 
translations. 

The first term (rotational form factor), for a molecule 
with atoms arranged in s shells with n u equivalent 
atoms in the ~ h  shell, can be written in X-ray 
diffraction as 

Fr°t(Q) = ~ n , fu (Q)  f exp(iQr) C, ( r )dr ;  (1) 
U = 1 cell 

Q is the momentum transfer, f , ( Q )  and C,(r) are 
respectively the atomic X-ray scattering factor (in 
electrons) and the positional probability of an atom of 
the ~ h  shell with respect to the crystal structure built 
up with the centres of gravity of the average molecules. 

C,(r) may be expanded into functions LI.  m adapted 
to the symmetry of the lattice. If we call "(2o and .O r the 
polar angles of the scattering vector Q and of r 
respectively, given a coordinate system defined by the 
standard crystallographic axes, then one can write 

C.(r) = 6(r - R . ) / r  z C.(O,~o) 

-- f i ( r -  R . ) / r  z Z C"t,,,, Lt.,,,(-Or). (2) 
1, m 

S o  

Fr°t(Q) = 47~ ,~ n . f ~ ( Q ) Z  itJ,(QR.)C~,,,,(-Oo) • 
~ = 1  I,m 
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(3) 
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Jl is the spherical Bessel function of order l, C,(O,~o) is 
the orientational average density in the crystal lattice of 
an atom of the Nh shell, and J is the Kronecker 
symbol. R ,  is the radius of the #th shell with respect to 
the centre of mass of the average molecule, which is at 
the origin of the crystal lattice. 

If the molecule is centred, or if it possesses several 
high-symmetry elements (m3m, ,~3m, 432, 6m2), the 
centre of gravity of the average molecule O is identical 
to that of the individual molecule G. In other cases, 
these two mass centres are not a priori identical and it 
will be necessary to introduce an eccentricity parameter 
e = OG in the fitting procedure. 

We ca l l f (m)  the probability that a molecule is in an 
orientation specified by the Euler angles w = (~t,fl, y) 
with respect to the crystal axes. 

If we take into account both site and molecule 
symmetries, we have 

1 
f ( w )  - 8z~ 2 Z (2l + 1)At,,,, Rtm,(W) (4) 

l , m , m '  

with A°l  = R°l(m) = 1; where Rtm,(( .o)  are  the rotator 
functions which allow the passage from molecular to 
lattice symmetry (Appendix B). 

One of the interesting properties of the molecular 
orientational probability is that f ( w )  allows the 
calculation of the rotational potential (Amoureux & 
Bee, 1980). 

If bu(.f~r, ) is the nuclear density of atoms of the/zth 
shell with respect to a coordinate system (primed) fixed 
in the molecule and rotating with it, 

bu(r') = 6(r' - R . ) / r  '2 b.(O',~p') 

R '~ " ( ~ , ) .  (5) = fi(r' -- . ) / r  ~. bt,,m, Mr,,,,, 
l ' , m '  

Ml,,m,(ff2r, ) are  the functions adapted to the molecular 
symmetry in this primed system. The atomic positions 
and therefore the orientational average nuclear den- 
sities, b,(O',tp'), for this rigid molecule are known in this 
molecular rotating system, btU,.m , which is the particular 
M* (Or,) value corresponding to the polar angles of l ' , m '  
an atom of the p, th shell with respect to the molecular 
axes can then be calculated. 

As C,(r )  = f f (w)  b , ( r ' )  dw (6), Press & Htiller 
(1973) have demonstrated that 

C" = Z A t  b" (7) l ,m ram' l ,m'"  

The orientational average density of the gth shell can 
then be written as 

c.(o,~o) = y At,.,,,, bT,,., L,,,,,(O#). (8) 
l , m , m '  

Then 

Fr°t(Q)  = • i tAt,n, T t , ( Q ) L t . m ( - Q Q )  
l , m , m '  

= Iq[Fr°t(Q)l + i IlUOt(Q)l (9) 

with 

T t , ( Q  ) 4re ~ j t ( Q R . )  bum ' n . f . ( Q ) .  (10) z l, 

l l = l  

In (9) the lattice symmetry gives the Lt, m functions; 
the molecular symmetry influences the T t ,  (Q) terms by 
means of the b" the t l,m', Atom, terms being coupled to the 
molecular and lattice symmetries. 

(2) l A ram' values corresponding to a f i xed  molecule 

The analysis of a plastic-crystal structure is carried 
out by refining the Al to  , parameters in order to reduce 
the weighted reliability factor Rw. The signs and the 
values of these A tin, terms vary considerably according 
to the molecular 'equilibrium positions'. 

It is therefore very important for the least-squares 
procedure to introduce 'good' initial Al to  , values not 
too far from their final values. An easy way to solve 
this problem is to introduce the A/m, values correspon- 
ding to the 'equilibrium positions' obtained with a first 
preliminary Frenkel model refinement. 

We then have to know what the relations are for the 
Atm, terms corresponding to a direction or to a 
molecule fixed with respect to the crystal lattice. 

By using the orthonormalization of the functions 
Ll.m(O,(O), it can be shown that the orientational average 
density C(0,¢p) of a direction fixed with respect to the 
crystal lattice (01,~p I and equivalent polar angles), can 
be mathematically described as 

C(O,¢p) = 6 (cos  0 -  cos  0 , )  6(~p - ¢p,) 

= y. L~,m(O,#, )Lt ,  m(O, cp). (11) 
l ,m 

For the same reason, the orientational probability 
f ( w )  for the molecule fixed with respect to the crystal 
lattice (w I and equivalent Euler angles), is written as 

f ( w )  = 6 (~ t -  rt 1) 3(cos f l -  cos ill) 6 ( y -  Yl) 

1 
- Rmm,(09,) ( 87t 2 ~ ( 2 l +  l) . t  Rt, , , (m).  12) 

I ,m ,m '  

These two equations [(11) and (12)] correspond 
respectively I(8), (4)] to the following relations: 

L?.m(O/P,)= Y A' b" (13) , mrn' I,m' 
m' 

*1 1 
a mm'" Rmm,(COl) = (13 ' )  
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~t in (13) is related to the direction in the molecular 
system which is fixed after rotation at 0~,~o~ (with 
respect to the lattice). 

When the same symmetry-adapted functions can 
describe both molecular and lattice symmetry (B4), 
then the molecule fixed at tn I = (0,0,0) (and equivalent 
Euler angles) corresponds to 

A l 6 rn / f i ,  (14) m m  t ~ 

For a molecule of 3m symmetry fixed at co, = (0,0,0) 
with respect to the cubic lattice,_ whether the factor 
group is centred (m3m) or not (43m or 432), all the 
A t equal zero (B6) except m/fi t 

A 2p - ( 2 -  ~q,0) '/2 S2~q,m(L), q 0, 1,2 /fi, 4 q  + I - -  = . . . .  

(15) 

S]~q,m(L ) is defined in Appendix B. 

(3) Cubic lattice 

If the crystal lattice is cubic, then the Lt, m symmetry- 
adapted functions are the cubic harmonics Kt./fi 
(Bradley & Cracknell, 1972). 

In this lattice symmetry, it has been demonstrated 
(Amoureux & Bee, 1980) that the rotational form 
factor can be written, up to order 12, as 

R[Fr°t(Q)] : TO/v/--~ 
5 

+ Z .Z (_I~pA2p 2p "," "*  l m '  Tin' (Q) K2p, 1(0o ) 
m '  p = 2  

12 + ~, ~ A m/fi"2 T,,,,(Q)KI2,m($-2o ) + .. . ,  (16) 
m' r e = l , 2  

IlU°t(Q) I = ~ Y (-)P "'A2p+ilm' Tm'2p+I (O) 
m' p =  1,3,4,5 

× K2p+I.I(12Q) + .... (17) 

The factor group of the average structure is centred 
(m3m) if the imaginary part of F(Q) is equal to zero; 
that is to say, only in two cases: 

(a) if the molecule is centrosymmetric then 
T 2 p + l ( Q )  = 0 ;  

/fi~ 
(b) if the time-average orientational probability of the 

molecule is centrosymmetric, then ,./fi/fi,a 2p+ 1 __ 0. 
When the site group is 432, only the cubic harmonic 

(up to order 12) of odd order K9. ~ exists (Bradley & 
Cracknell, 1972). 

As we deal with cubic symmetry, we use an isotropic 
translational Debye-Waller factor: 

F(Q) : exp[ -Q 2 (u2x)/2lFr°t(Q). (18) 

(u2x) = (u2)/3 is the mean-square amplitude along 
any axis of the translational motions of the whole 
molecule. 

If we use a Frenkel model in which the molecule 
carries out isotropic librations (r.m.s. amplitude 

Table 1. Maximum orientational average density 
Cm,,x(01,(O0 and the corresponding minimum libration 
amplitude for  the cubic harmonics up to order 12 

describing a direction f ixed in (0~,~o~) 

O~,q h [001] IllO] [1|1] [lll]m3m 

Cma x 2.57 1.38 2"95 1.79 
A2 \1,2 5.8 ° 5.6 ° 4.7 ° 6.1 ° Visot roplc/rain 

n2 \~/2~ with a Gaussian orientational average v iso t roplc /  : 
density C(0,tp), its maximum value (along the N 
equivalent equilibrium positions) is 

2 ] - 1 .  Cma x : [2~rN (0,sotrop,c) (19) 

We can calculate up to order 12 (equation 11) the 
maximum orientational average density Cmax(01,~o~) 
along the symmetry axes of the lattice (Table 1). 

These results (Table 1) point out that the cubic 
harmonics up to order 12 cannot correctly describe 
plastic crystals carrying out librations with r.m.s. 
amplitude smaller than 6 ° 

(4) Molecule o f  3m symmetry in a cubic lattice 

For the molecular threefold axis (denoted in the 
following as A), the only b~m, values different from 
zero (equation A5) are those with m' = 1" 

b a = [(2l + 1)/47r] l/z, tim', 1. (20) 
I , m '  

Therefore, the orientational average density of the 
molecular threefold axis (A) is fixed by the terms A t ml 
alone: 

C~(0,tp) = Y Arm, 1(2l + 1)/4rrl '/2 Kt.m(O, tp). (21) 
l ,m 

Since for 0 = ~p = 0 the only non-vanishing cubic 
harmonics are K2p.~, the above orientational average 
density has the same value along the [001] directions 
whether the factor group is centred (m3m) or not (43m 
or 432)" 

1 
C~([001 l) -- - -  

47r 

+ ~ A~f[(4p + 1)/47tll/2K2p.~ ([001l). (22) 
p = 2  

Therefore, if the 'equilibrium positions' for the 
molecular threefold axis (A) are along the [001] axes" 

(i) it will then be very difficult to know if the factor 
group is centred or not (equations 22, B7); 

(ii) moreover, these [0011 axes being twelvefold 
(m3m) or sixfold (3,3m,432) axes for the orientational 
probability of the molecule, f(tt,0,y) (equation B7), it 
will often be very useful to consider only the free 
uniaxial rotation (Fig. 4) for the molecule. 

The other terms t Am,n' (m' 4= 1) which determine the 
molecular position around the threefold axis (A) are all 



Table 2. The A tm.x values corresponding to the orientation of  the molecular threefold axis A fixed with respect to 
the cubic lattice (01,~o I and equivalent polar angles) 

These A t,,,.~ values correspond to the site group 2,3m or m 3 m  (I even). 

I,m 3,1 4,1 6,1 7,1 8,1 9,1 10,1 12,1 12,2 
01 ,~0~ 

100 0 0 0 0.6955 0 
6 4 8 8V/6 

v/2i 13V/2 9V/33 - V ' ~  
110 0 0 0 - 0 .  12837 -0 .5862 

24 32 128 256v/6 

V ~ V/2] 4V/2 V/-9-i V/33 -16V~5 
I11 0.518 0.05485 -0-4118 

3 9 9 9V23 27 81V/'6 

equal to zero for a free uniaxial rotation (equation A6). 
In order to describe the free uniaxial rotation for a 

molecule with any symmetry around one of its axes, 
one has only to fix this axis along OZ' in the molecular 
rotating system. In the same way as for the 3m 
symmetry, the free uniaxial rotation around OZ' 
removes the influence of all the Mr. m functions except 
the spherical harmonics Yt.o = Mt, l. In the refinement, 
this free uniaxial rotation is then obtained easily by 
setting all the A t (m' e: 1) to zero. mm' 

The orientation of the molecular threefold axis (A) 
fixed with respect to the lattice (0rq h and equivalent 
polar angles), corresponds to (equations 11, 21): 

A l ml(01 , ( f f l )  = [4zr/(21 + 1)11/2 Kt.m(Op% ). (23) 

These At,,~(01,qh) values which are given in Table 2 
for the three crystallographic directions [0011, [0111, 
11111 are identical to those obtained from (13). 

III. Structure determination of l-eyanoadamantane, 
Ct0HIsCN, at room temperature 

I 
Z' 

The 112 independent experimental structure factors, 
the seven parameters defining the molecule, and the 
weighted reliability factor R w are those described in the 
paper on the Frenkel model (Amoureux & Bee, 1979). 

We found a f.c.c, lattice with a parameter a = 
9.813 (3) A, Z = 4, and only three possible space 
groups: Fm3m, F,i3m, F432. 1-Cyanoadamantane or 
adamantane carbonitrile (CIoHxsCN), formally known 
as tricyclol 3.3.1.13.7 ]decane- 1-carbonitrile is obtained 
from adamantane (Cl0Hx6) by substituting a - C = N  
radical for one methyl hydrogen (Fig. 1). This 
substitution brings about no change in the rest of the 
molecule (Chadwick, Legon & Millen, 1972); the 
symmetry is 3m. In the molecular rotating coordinate 
system (primed), the eccentricity vector e = OG 
between the origin O and the the mass centre G of the 
molecule is along the molecular threefold axis (A) for 
symmetry reasons. 

Let us call e I the e value when O is at the centre of 
gravity O' of the four tertiary carbon atoms. In the 
general case (Appendix C, Table 4), for the calculation 
of the T~, (Q) values, there are ten different sorts of 
atoms on ten different shells with respect to the origin 
of the lattice. In the particular case e = e r there are 
only nine different sorts of atoms on six different shells. 

In the paper on the Frenkel model structure 
(Amoureux & Bee, 1979), we have shown that for the 
'equilibrium positions', the molecular threefold axis (A) 
is along the lattice fourfold axis [001], and e = e 1. 

Moreover, in this Frenkel model, the refinement 
carried out with a free uniaxial rotation around d gave 
a fair agreement between observed and calculated 

~-Ct  t 

H~ 
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Fig. 1. A molecule of 1-cyanoadamantane C~0HIsCN in the 
molecular rotating system for e = e~. The definition of the 
different sorts of atoms corresponds to that given in Table 4. 
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Table 3. Results for 1-cyanoadamantane C l0 H,SCN 
2 (0i~ot~,,p~)a is calculated for isotropic harmonic librations. 

<'/~2 \,;2 (o) A], A 6, A], A '° A '2 ,2 R~.. ((~0) ( l / 2 )  ( h 2 )  X~i .... . . .  p ic /A I1 II A21 

0.24 0.64 0.26 0.55 34.1 9.4 
+_0.05 _+0.06 _+0.05 _+0.08 

0.26 0.67 0.27 0.51 0.26 27.4 8.7 
+_0-03 +_0.06 k0.04 -+0-07 -+0.07 

0- 22 0.57 0.24 0.54 0-23 0.48 - 0 . 0 8  15.4 7.0 
L0.02 +0.06 +0.03 +0.05 +0.05 _+_0.05 +0.04 

structure factors (R w = 8%) with only three adjustable 
parameters. 

In this compound the coupling between translations 
and rotations has a very small influence on experimen- 
tal results: the C=-N reorientations being very scarce at 
room temperature (400 kHz). 

Taking into account the preceding results and 
following the corresponding conclusions of {}II.4, we 
decided to carry out the refinement in the Fm3m space 
group for a free uniaxial molecule rotating around A 
(only A~*] 4: 0). 

The results* (Table 3) obtained by fixing e = e~ incite 
three comments: 

* Lists of structure factors and Ft. ~ and D~., values necessary to 
calculate M t . q ( O ' ,  ~o') in Appendix A and 2p R T q ( n , f l , 7 )  in Appendix B 
have been deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 35569 (4 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

/ 

IOO I 

1.5 ( ' . ,  (/t .  it 45 I 

. I 

.() 
.I 

5 0 5 

Fig. 2. The orientational average nuclear density in the (1 i0) plane 
for the cyano group of C,0H~sCN calculated with cubic 
harmonics up to order ten (dashed curve) or 12 (solid curve). The 
circle corresponds to the value l/4zr for a completely random 
distribution of orientations. 

(i) The isotropic translational mean-square am- 
plitude is the same as the one found in the Frenkel 
model structure: (U2)l~renkel = (0.207 + 0"006)A 2. 

(ii) The fitted A ~ values are close to those of Table 2 
corresponding to the molecular threefold axis (A) fixed 
along [001 I. 

(iii) The r.m.s, amplitude (7 °) (Fig. 2) for the 
isotropic librations of A is much larger than the value 
(3.5 o) deduced from the Frenkel model structure. 

This very small value (3.5°), which would have 
needed a higher-order development for the symmetry- 
adapted functions, is certainly the reason why the 
refinement is not as good as we would like. We then 
introduced in the refinement the terms A ~ ,  (m' 4: 1), 
but as was foreseeable these inaccurate fitted values did 
not significantly change the residual factor R w (13.7%). 

We then refined the eccentricity vector e and 
verified that the centre of gravity of the average 
molecule O is (Fig. 3) at O', the centre of gravity of the 
four tertiary carbon atoms. 

IV. Discussion 

We have calculated the rotational form factor Fr°t(Q) 
for X-ray diffraction of plastic crystals using two 
different symmetry-adapted functions: one for the 
molecule and one for the lattice. 

We have demonstrated that, for a cubic lattice, the 
use of the cubic harmonics up to order 12 can only 
describe molecules with r.m.s, librational amplitudes 
larger than 6 ° 

R,, (%) 

~o~J. . .:o~. . . . .  ,,.e,,(A, 
- . 3  - . 2  • 1 0 .1 .2 .3 .4 .5 .6 .7 • 

Fig. 3. Minimum R w value v e r s u s  the eccentricity parameter e - e v 
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We have applied these calculations to the particular 
case of a molecule with 3m symmetry in a cubic lattice, 
and we have given the A t values according to the mm I 

'equilibrium positions'. For cyanoadamantane 
C~0HI~CN, the translational r.m.s, amplitude (u2), the 
orientational average density for the cyano group 
C~(&~0) and the position for the mass centre of the 
individual molecule (e = el) correspond exactly to 
those found by the Frenkel model (Amoureux & Bee, 
1979). 

The refinement, not as good as we would like (R w = 
15.4%), is the result of a very small librational 
amplitude (r.m.s. -- 3-5 °) for the cyano group, not 
describable with cubic harmonics with order only up to 
12. 

The authors thank G. Odou for measuring the 
intensities and C. Carpentier and M. Muller for 
growing the single crystals. They also thank W. Press 
and A. Hfiller for their friendly advice, and Professor 
Fouret for his constant interest in this work. 

APPENDIX A 
3m molecular symmetry-adapted functions 

The molecular symmetry being 3m, we choose its 
primed rotating system such that OZ'  is along the 
threefold axis A and X ' O Z '  is one of the three mirrors 
of the molecule. 

The 3m molecular symmetry-adapted functions 
Mr,,(0',e') are defined according to the polar angles 
0',~0' with respect to this molecular system: 

Mt.q(0',(p' ) = Mt,q(0',-¢p' ) 

= Mt.q(0',cp' + 2~t/3). (A 1) 

With respect to normalized spherical harmonics 
(Bradley & Cracknell, 1972) we have 

Mt.q(O',¢p') [Yt,3(,_q~(0',~0') ( -1  q ' ' = - ) Yt.3(o_l~(O ,0 )l 

x 12(1 + ~q.l)] -1/1 q > 1, 

Mt.q(0',cp') = cos l3(q - 1) ¢P'I sin 31q- n (0') 

where 

(A2) 

x Et.q(O')Ft.q(O')/(47r) m, (A3) 

Et.q(0') = 1 if l + q is odd, 
(A4) 

Et.q(O') = cos ( 0 ' ) i f / +  q is even, 

Frq(O') is a polynomial in u 2 = cos 2 (0') such that 

Fri(0) = (21 + 1) 1/2. (A5) 

The sum over all the identical atoms resulting from 
the symmetry elements of the Mr. q values is equal to 
zero: 

(i) for l + q even, if there is a mirror perpendicular to 
the molecular threefold axis A (6m2); 

_(ii) for I odd, if the molecule is centrosymmetric 
(3m). 

When the molecule carries out a free uniaxial 
rotation around its threefold axis (A) which is along 
OZ' ,  then the only symmetry-adapted functions to be 
used are Mr. r in which ¢p' does not occur. This 
corresponds in the structure refinement to fixing 

Arm,,, = 0 if m' 4= 1. (A6) 

APPENDIX B 
Molecular-lattice rotator functions R(w) 

I. General case 

In the general case we have two types of symmetry- 
adapted functions: one for the molecule Mt.q(0,~0) and 
one for the lattice kt,,(0,¢). 

The molecular Mr. q and lattice Lt. , symmetry- 
adapted functions are linear combinations (James & 
Keenan, 1959) of spherical harmonics: 

t 

Mt.q(0,¢) = Z S~q(M)Yt.,(0,~o); 
n =  - - I  

(B1) 
I 

Lt,,(O,q~) = Z S~,(L) Yt.,,,(O,~o). 
m - -  - - [  

The spherical harmonics and symmetry-adapted 
functions being orthonormalized, the matrices of order 
21 + 1, with coefficients St.q(M) and Stm.,(L), are 
unitary. 

The symmetry-adapted functions Mr. q and Lt, ~ can 
be related to each other by means of molecular-lattice 
rotator functions R(co) in which o) = (",fl,7) are the 
Euler angles (Rose, 1957): 

2l+  1 

Ml.q(O',~°') = Z Lt.,(0,~P) R/,q(°9), (B2) 
1"=1 

l 

R z,q (09) = E 
n , m = - I  

S~q(M) Sm,(L)'* Dt,,,,(co). (B3) 

then 

When molecular and lattice symmetry-adapted 
functions are identical, from (B3) we deduce that 

R~q(0) = 5,.q. (B4) 

II. Molecule o f  3m symmetry in a cubic lattice 

For a molecule of 3m symmetry, the only terms 
S~q(M) not equal to zero (Appendix A). are the 
following: 

Stol(M) = 1, S~(q_n,q(M)= ( - l ) q + l / v / 2 ,  
(B5) 

S~(~_q~.q(M) = 1/V~ with I >_ 3 ( q -  1) > 0. 
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By using these St,,q(M) values [equation (B5)], (B3) 
and the S ~ , ( L )  values (Bradley & Cracknell, 1972; 
Amoureux & Bee, 1980), it can be shown that the only 
Ft~o((t,0,7) values not equal to zero are the following: 

R,,4q+:° ,(,,,0,7) = V/ (2  - 6q, o) S]~q, , (L)  
x c o s l l 2 q ( a + y ) l  2 p >  12q>O;  

(B6)  

~ *2P+ ' (L )  sin [6q(~ + )')] 1:12p+ 1 l(a,0,~, ) = __iv/~ "~q,, ' "t, 2q + 

2 p +  1 > 6q > 0. 

The Euler angles (a,0,7) correspond to a rotation (t + 
7 around the [001 ] axis. 

So, from (B6) when the molecular threefold axis A is 
along the [001] axes, these are then 12-fold axes (m3m) 
or sixfold axes (J,3m,432) for the molecular orientation 
probability around these axes [001 ]. 

For example, up to order 12, we can write: 

6 

8rr~(n,0,),) = 1 + Y. (4p + 1)A~.S0~{(L) 
p = 2  

+ 25V/2 cos [12(a  + )')l 
2 

X ~ .  A ~ S  12 ( L )  12 ,m~ 
m = l  

- i x / 2  s i n l 6 ( .  + 7)1 

x ,5_£ (4p + 3) A2t'+l ~*2P+I(L) 
r a l 3  " 6 , 1  

p = 3 , 4 , 5  

+ .... (BT) 

t 
I 
[ 

7()~ 
I 
! 

I 
5o-I 

I 

40  J 
I 

3oJ 
I 

2oi: 
I 
I 

8 : ? ( ~ t .  O. :') 

i '., 
.--. \ - . - .  \ • . / ' " "  

4_/'_ _LL 
• .. 

\ 

I t t  . i 

( - ~  - ~  . . . .  i . . . .  "r ~ -  T ~ T ~ " - - f ~ T  ~ "  " ~ ' "  ~ " ~ "  

Fig. 4. For Kt.,. up to order 12 (equation 12), 8rr~f(n,O,y) versus 
(~ + 7 (the rotation angle around the [001] axis) is represented by 
a dashed curve (Fm3m) and by a solid curve (F43m) for a 
fixed molecule (a + y == 15 °, fl = 0), and by a dot-dashed curve 
for a free uniaxial rotational model. In the Fm3m space group, if 
the cubic harmonics are not used up to order 12, .f(a.O,7) has the 
same constant value whether the molecule is fixed or carrying out 
a free uniaxial rotation. 

For this particular 'equilibrium position', with A 
along the [001] axes: 

(i) it will be very difficult to show that the factor 
group is not centred: only A~3, A~3 and AI~ influence 
f(a,0,7): 

(ii) in the m3m factor group, A ]~ and A 12 25 are the first 
two AZV terms which modulateft~t,0,y) versus (a + 7), 

m m  ~ 

but only to a small extent (Fig. 4). So it will be very 
useful in this case to utilize a free uniaxial rotational 
model (A~,,,,,, = 0 if m' 4= 1). 

When the 'equilibrium positions' for A are not close 
to the [001] axes, then the influence of these terms At,,,,, 
(m' 4= 1) may be very great (Fig. 5). 

In the general case for w = O~,fl, Y), we obtain for the 
Fm3m space group: 

R 2 p  0.~ , ,q (  # Y ) =  
(2 - Jq, 1) z/2 p/2 

2 Z (2 - 6j, o) $4j2P,,(L) 
J=O 

x ~ [  Dl~',3~,_q)(oa) - ( - 1 )  q Dl~',3~q_,)(co)]. 

(B8) 

110- 

100- 

9O- 

8 0  
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3o-  
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20-  

\ 

I(t- 

0 -mr ~ .  r ~  , ~  T 
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• ~ " ~ -  ~l 

15 20 25 3O 

Fig. 5. The molecular orientational probability f (q )  versus q, the 
rotation angle around the [ 111] axis, for a fixed molecule in the 
m3m factor group. In this fixed position the molecule has its 
threefold axis A along [111] and its three mirrors in the (1 [0) 
planes. 8n2f(q)  is represented according to the order of the cubic 
harmonic development: solid curve for order 12; dashed curve 
for order ten: dot-dashed curve for order eight. If the molecular 
librations perpendicular to A are supposed to be harmonic, we 
find for their r.m.s, amplitudes: 7.5; 9.5; 11.5 ° respectively. For 
the same-order development, in the tree uniaxial rotational 
model, 8n2f(r/)  is constant and equal to 22.4: 1 8 . 4 : 9 . 2  
respectively. 
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Table  4. Description o f  the atoms with respect to the molecular rotating system 

The number of atoms belonging to each of the ten different shells is given in parentheses. 

For each sort of atom, the three values X', Y' and Z' + e~ - e have to be multiplied by the corresponding radius R, the values of which 
have been published (Amoureux & Bee, 1979). 

(3) Csl (+) (3) Hs2 (+) 
Quantity( ) (I)N (1)C N (1) Crl (3) C n  (3) Hr (3) Cs2 (-)  (6) Hsl (3) Hs3 (-)  

Multiplication × RNr × RCN x × Rcr x Rcx × RHx × Rcs × Rns × Rns 

factor 2V/~ 2V/~ V/~ V/~ V ~ [  sinr/, , ~ 
X' 0 0 0 + - -  - -  cos r/' +_ - cos r/ 

3 3 " - 3  3 ~--- - - ~  

Y' 0 0 0 0 0 0 sin q' 0 

! 1 1 cos q' + V/2 sin q' - cos r/' 
Z'  + e~ - e 1 1 1 + - -  

3 3 - V / 3  V/3 V/~ 

In (B8), we can  use the re la t ions :  

Dt,,,,n(c~,fl, y) = d~ , . ( f l )  exp [ - i ( m t t  + nT)], 

= d,,,,,,(fl) = dim -n(fl), dt, m(fl) (-- 1)"+'~ l 
- -  , 

d / , _ , ( f l )  = d ~ , , ( z t -  fl). (B9)  

So, if we call C = cos fl, we have  on ly  to ca lcu la te  

d / , ( f l )  = s inm-"(f l ) (1  + C)"  P t , , ( C )  

for I _> m > n _> 0. (B10)  

All the  P t , , ( C )  va lues  n e c e s s a r y  to ca lcu la te  (B8) up 
to order  12 have  been pub l i shed  ( A m o u r e u x  & Bee, 
1980). 

A P P E N D I X  C 
Descr ip t ion  o f  the m o l e c u l e  

Let  us call r/' the  angle  be tween  two nex t -neares t  
m e t h y l e n e  h y d r o g e n s  and  O'  the mass  cent re  of  the 
four  t e r t i a ry  ca rbons .  In the genera l  case,  we have  ten 
different  sor ts  of  a t oms  (Table  4) on ten different  radii  
(with respect  to the or igin o f  the lat t ice O). In the 

pa r t i cu la r  case  e = e 1 (O is on O') ,  there  are on ly  nine 
different  sorts  o f  a toms  (Cs~ =- Cs2) on six different  
radii.  
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